Anti Theft Car wireless alarm
Game Show Timers Schema electronic Circuit
Electronic Circuit Symbols Components
Drawing ambit diagrams
Drawing ambit diagrams is not difficult but it takes a little convenance to draw neat, bright diagrams. This is a advantageous accomplishment for science as able-bodied as for electronics. You will absolutely charge to draw ambit diagrams if you architecture your own circuits.
Follow these tips for best results:
Make abiding you use the actual attribute for anniversary component.
Draw abutting affairs as beeline curve (use a ruler).
Put a 'blob' () at anniversary alliance amid wires.
Label apparatus such as resistors and capacitors with their values.
The absolute (+) accumulation should be at the top and the abrogating (-) accumulation at the bottom. The abrogating accumulation is usually labelled 0V, aught volts.
If you are cartoon the ambit diagram for science amuse see the area about cartoon diagrams the 'electronics way'.
If the ambit is complex:
Try to align the diagram so that signals breeze from larboard to right: inputs and controls should be on the left, outputs on the right.
You may omit the array or ability accumulation symbols, but you charge accommodate (and label) the accumulation curve at the top and bottom.
Drawing ambit diagrams the 'electronics way'
Circuit diagrams for electronics are fatigued with the absolute (+) accumulation at the top and the abrogating (-) accumulation at the bottom. This can be accessible in compassionate the operation of the ambit because the voltage decreases as you move bottomward the ambit diagram.
Circuit diagrams for science are commonly fatigued with the array or ability accumulation at the top. This is not wrong, but there is usually no advantage in cartoon them this way and I anticipate it is beneath accessible for compassionate the circuit.
I advance that you consistently draw your ambit diagrams the 'electronics way', alike for science!
[I achievement your science abecedary won't apperception too much!]
Note that the abrogating accumulation is usually alleged 0V (zero volts).
This is explained on the Voltage and Current page. READ MORE...
Dome light dimmer With delay for Cars
Wiper Speed Control Circuits
Charge Monitor For 12V Lead Acid Battery
RF Transceiver Module - High Frequency RF Transceiver - 900 Mhz
RF Transceiver Module - High Frequency RF Transceiver - 2.4GHz. Transceiver
RF Modules - RF Transceiver
Laipac offers several low cost RF modules for high speed data transmission. Low cost modules include the TLP/RLP series of transmitters and receivers . These modules are very versatile, therefore perfect for OEM customers. We also offer a variety of Transceivers for voice, data & voice and data & voice & video. The transceivers are great for more complex, full duplex telemetry or communications.
RF Transceiver Module
Model
Main Features
Frequency
Voltage
Data Rate
Sensitivity
Max. Consumption
RF900DV
16 Channels
902.525~
904.625MHZ. & 902.525 ~
5V (Base) &
3.6V (Remote),
200Kbps~28.8Kbps
-103dB
80mA
TRF-2.4G High Speed Data/Transceiver 2.4Ghz Frequency : 2.4~2.524 GHz 3V Estimated 100mts @250Kbps ; 50mts @1Mbps, Line of Sight -90dB @250kbps
-80dB @1000kbps 18 mA@250kbps
READ MORE...
WIRELESS USB DONGLE - AWP24U
WIRELESS USB DONGLE - AWP24U - RF and RFID
Digi-Key Part Number 748-1002-ND
Price Break Unit Price Extended Price
1 31.99000 31.99
10 24.99000 249.90
100 19.99000 1999.00
500 17.75004 8875.02
1000 16.99001 16990.01
Manufacturer Part Number AWP24U
Description WIRELESS USB DONGLE
Quantity Available 12
All prices are in US dollars. READ MORE...
Wireless USB - RF Transceivers™
Cypress's WirelessUSB(TM) solutions are designed for short-range, multipoint-to-point connectivity. WirelessUSB enables PC Human Interface Device (HID) peripherals, such as wireless mice, keyboards, media-center remote controls and presenter tools, wire replacement with a low-power and highly reliable, 2.4GHz wireless solution. Cypress's patented WirelessUSB technology offers unparalleled feature set to enable superior RF performance, interference immunity, and maximum battery life.
To further extend the flexibility and programmablity of Cypress's Wireles portfolio, PRoC(TM) - Programmable Radio-system on-a Chip - integrates a flexible 8-bit microcontroller with the 2.4GHz radio transceiver in a single chip solution. The PRoC solutions offers a unique capability of component integration to enable extremely small form factor designs for low-power wireless systems.
Furthermore, Cypress's easy-to-use Wireless hardware and software tools reduce wireless complexity for customers, significantly reducing design cycles, from end-to-end wireless keyboard and mouse reference designs to production ready, pre-certified RF modules. Modules provide complete drop-in solutions, including the complete (silicon and all external components) printed circuit board (PCB) to meet maximum performance requirements. Cypress has partnerships with Ontario-based Artaflex, Fremont, CA-based Unigen, and Italy-based Aurel to offer a wide portfolio of wireless modules. Information and datasheets for these modules can be found on their websites:
|
transmitters modules at 433.92MHz
Model: TLP - F02
Remote Control (Transmitter)
FCC Certified
Frequency Range: 433.92MHz
Size: 50 x 38 x 11 (mm)
Battery: 12V
Button: 2 keys
2.4 Ghz. Transceiver - RF Transceiver-OEM
Specification
2.4Ghz. Data Transceiver" - TRF-2.4G TLP2.4G - High Speed Data/Transceiver 2.4Ghz
Specification :
* Frequency : 2.4~2.524 GHz
* Modulation type: GFSK
* Op. Voltage: 3V
* Output Power: +4dBm
* Data Rate: 1Mbps
* Small footprint size: 20.0 x 36.7 x 2.4mm
* Operating Tempeature: -40 ~ + 85 C
* Long range : estimated 100mts @250Kbps ; 50mts @1Mbps , Line of Sight
* Built-in antenna.
* Real full-duplex, including decoder, encoder and data buffer.
* Very low cost
* Applications: Telemetry, Wireless Toys, Remote Control, Wireless Speaker, Wireless Earphone or Walkie-Talkie, Wireless Mouse and Keyboard, Utility Meters Data Downloading ...etc
Model Description SPEC (PDF)
TRF-2.4G High frequency Transceiver module (GFSK) 2.4GHz
Symb Parameter(condition) Notes Min. Typ. Max. Units
VDD Supply voltage 1.9 3.0 3.6 V
TEMP Operating temperature -40 +27 +85 Centigrate
f op Operting frequency 1) 2400 2524 MHz
R GFSK Data rate direct mode 3) 250 1000 kbps
F CHANNEL Channel spacing 1 MHz
I VDD Supply current one channel 250kbps 18 mA
I VDD Supply current one channel 1000kbps 19 mA
I VDD Supply current two channels 250kbps 23 mA
I VDD Supply current two channels 1000kbps 25 mA
RX SENS Sensitivity at 0.1%BER(@250kbps) -90 dB
RX SENS Sensitivity at 0.1%BER(@1000kbps) -80 dB
Conditions: VDD=+3V,VSS=0V,T A =-40 centigrade to +85 centigrade READ MORE...
New 2.4 GHz RF Transceiver Nodules
A Simple Electronic Buzzer electronic
Schema HO Train Model Lighthouse Flasher
Trigger Input Control Of 555 Timers
SET TIMING CALCULATORS FOR THE LM555
Tips RESET And CONTROL Terminal Notes
Back the RESET terminal is not activity to be acclimated it is accustomed convenance to affix this ascribe to the accumulation voltage. This is abnormally accurate of the CMOS adaptation of these timers as the inputs of these accessories are actual sensitive.
The RESET terminal can additionally be affiliated to the CONTROL terminal after affecting the basal operation of the timer but the timing aeon will be afflicted as the voltage at the CONTROL terminal will bead actual slightly. For best aeon circuits this will not be a problem.
In abounding cases the CONTROL ascribe does not crave a bypass capacitor back a able-bodied adapted ability accumulation is used. However, it is acceptable convenance to abode a 0.1 microfarad (C2) or beyond capacitor at this terminal to abbreviate voltage fluctuations.
It is additionally acceptable convenance to abode a 0.1uF bypass capacitor (C1) beyond the ability accumulation and amid as abutting to the IC as possible. This will abate voltage spikes back the achievement transistors of the timer change states. READ MORE...
LM555 and LM556 Timer Circuits
High-Order Digital Parametric Equalizer Design
Top Equalizer design example
Here i have sample Equalizer design example
% "Filter design" lecture notes (EE364) by S. Boyd % (figures are generated) % % Designs a frequency-domain and time-domain FIR equalizer for % a single-input single-output (SISO) channel. % % Frequency-domain equalization uses a Chebychev criteria and % is specified in terms of frequency response functions. % It is a convex problem (which can be formulated as an SOCP): % % minimize max |G(w)H(w) - G_des(w)| for w in [0,pi] % % where H is the frequency response function and our variable % is the filter impulse response h. Function G is the unequalized % frequency response and G_des is the desired freq response. % % Time-domain equalization immediately designs the impulse % response function by specifying the problem in time (it's an LP): % % minimize max_{t neq D} |g_tilde(t)| % s.t. g_tilde(D) = 1 % % where g_tilde is the impulse response of equalized system, % and D is the delay of the system. % % Written for CVX by Almir Mutapcic 02/02/06 %******************************************************************** % problem specs %******************************************************************** % sample channel with impulse response g g =.5*[ 0.6526; 0.2157; -0.2639; 1.8024; -0.6430; ... 0.1096; -0.7190; 0.4206; -0.0193; 0.6603;]; % problem parameters n = 30; % filter order D = 10; % overall delay %******************************************************************** % frequency domain equalization %******************************************************************** % number of freq samples (rule-of-thumb) m = 15*(length(g) + n); w = linspace(0,pi,m)'; G = exp( -j*kron(w,[0:length(g)-1]) )*g; A = exp( -j*kron(w,[0:n-1]) ); % desired frequency response is a pure delay (equalized channel) Gdes = exp(-j*D*w); % formulate and solve the Chebyshev design problem cvx_begin variable hf(n,1) minimize( max( abs( G.*(A*hf) - Gdes ) ) ) cvx_end % check if problem was successfully solved disp(['Frequency equalization problem is ' cvx_status]) if ~strfind(cvx_status,'Solved') return end %******************************************************************** % time-domain equalization %******************************************************************** % define the convolution matrix Tconv = toeplitz([g; zeros(n-1,1)],[g(1) zeros(1,n-1)]); % create array of all times without t=D times_not_D = [1:D D+2:size(Tconv,1)]; % formulate and solve the time equalization problem cvx_begin variable t variable ht(n,1) minimize( max( abs( Tconv(times_not_D,:)*ht ) ) ) subject to Tconv(D+1,:)*ht == 1; cvx_end % check if problem was successfully solved if ~strfind(cvx_status,'Solved') disp(['Frequency equalization problem is ' cvx_status]) return end %******************************************************************** % equalizer plots %******************************************************************** % plot g figure(1) plot([0:length(g)-1],g,'o',[0:length(g)-1],g,'b:') xlabel('t') ylabel('g(t)') figure(2) H = exp(-j*kron(w,[0:length(g)-1]))*g; % magnitude subplot(2,1,1); plot(w,20*log10(abs(H))) axis([0,pi,-20,20]) xlabel('w') ylabel('mag G(w) in dB') % phase subplot(2,1,2) plot(w,angle(H)) axis([0,pi,-pi,pi]) xlabel('w') ylabel('phase G(w)') % freq equalizer figure(3) plot([0:n-1],hf,'o',[0:n-1],hf,'b:') xlabel('t') ylabel('h(t)') % plot g_tilde figure(4) gt=conv(g,hf); plot([1:length(gt)]-1,gt,'o',[1:length(gt)]-1,gt,'b:') xlabel('t') ylabel('g tilde(t)') axis([0,length(gt)-1,-.2 1.2]) figure(5) H = exp(-j*kron(w,[0:length(gt)-1]))*gt; % amplitude subplot(2,1,1) plot(w,20*log10(abs(H))) axis([0,pi,-20,20]) xlabel('w') ylabel('mag G tilde(w) in dB') % phase subplot(2,1,2) plot(w,angle(H)) axis([0,pi,-pi,pi]) xlabel('w') ylabel('phase G tilde(w)') % time equalizer figure(6) plot([0:n-1],ht,'o',[0:n-1],ht,'b:') xlabel('t') ylabel('h(t)') % plot g_tilde figure(7) gt=conv(g,ht); plot([1:length(gt)]-1,gt,'o',[1:length(gt)]-1,gt,'b:') xlabel('t') ylabel('g tilde(t)') figure(8) H = exp(-j*kron(w,[0:length(gt)-1]))*gt; % magnitude subplot(2,1,1) plot(w,20*log10(abs(H))) axis([0,pi,-20,20]) xlabel('w') ylabel('mag G tilde(w) in dB') % phase subplot(2,1,2) plot(w,angle(H)) axis([0,pi,-pi,pi]) xlabel('w') ylabel('phase G tilde(w)')
Power Amplifier with 2N3055
Simple and low cost. The optimal supply voltage is around 50V, but this amp work from 30 to 60V. The maximal input voltage is around 0.8 – 1V. As you can see, in this design the components have a big tolerance, so you can build it almost of the components, which you find at home. The and transistors can be any NPN type power transistor, but do not use Darlington types… The output power is around 60W.
Some comments:
- capacitor C1 regulates the low frequencies (bass), as the capacitance grows, the low frequncies are getting louder.
– capacitor C2 regulates the higher frequencies (treble), as the capacitance grows, the higher frequencies are getting quiter.
copy from : http://www.electronics-lab.com/projects/audio/042/index.html READ MORE...
Power Amplifier with 2N3055
Simple and low cost. The optimal supply voltage is around 50V, but this amp work from 30 to 60V. The maximal input voltage is around 0.8 – 1V. As you can see, in this design the components have a big tolerance, so you can build it almost of the components, which you find at home. The and transistors can be any NPN type power transistor, but do not use Darlington types… The output power is around 60W.
Some comments:
- capacitor C1 regulates the low frequencies (bass), as the capacitance grows, the low frequncies are getting louder.
– capacitor C2 regulates the higher frequencies (treble), as the capacitance grows, the higher frequencies are getting quiter.
copy from : http://www.electronics-lab.com/projects/audio/042/index.html READ MORE...
12V LED Flasher for Cars
This is so wonderful circuit diagram Because you can up grade the out look of you car or van by using this simple circuit .Actually this is a blinking Led circuit on the other hand this circuit is called multivibrator circuit.The impotent thing of this circuit is this circuit can be operated with 12V power supply
source : http://freecircuitdiagrams4u.blogspot.com/2010/07/12v-led-flasher-for-cars.html
READ MORE...
12V LED Flasher for Cars
This is so wonderful circuit diagram Because you can up grade the out look of you car or van by using this simple circuit .Actually this is a blinking Led circuit on the other hand this circuit is called multivibrator circuit.The impotent thing of this circuit is this circuit can be operated with 12V power supply
source : http://freecircuitdiagrams4u.blogspot.com/2010/07/12v-led-flasher-for-cars.html
READ MORE...